Behaviour of skewness, kurtosis and normality tests in long memory data

نویسنده

  • Mohamed Boutahar
چکیده

We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither √ n-consistent nor asymptotically normal. The normalizations needed to obtain the limiting distributions depend on the long memory parameter d. A direct consequence is that if data are long memory then testing normality with the Jarque–Bera test by using the chi-squared critical values is not valid. Therefore, statistical inference based on skewness, kurtosis, and the Jarque–Bera normality test, needs a rescaling of the corresponding statistics and computing new critical values of their nonstandard limiting distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normality of Indian Crop Yields: Application of Panel Analysis

This paper has two-fold contribution. First, normality of the crop yield residuals are examined using panel statistical procedures accounting for trend, autocorrelation and heteroskedasticity. Second, to evaluate the importance of accounting for spatial and temporal variation on the normality of crop yield residuals, the changes in the skewness, kurtosis and D’Agostino-Pearson 2 (K ) omnibus no...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Skewness and kurtosis as locally best invariant tests of normality

Consider testing normality against a one-parameter family of univariate distributions containing the normal distribution as the boundary, e.g., the family of t-distributions or an infinitely divisible family with finite variance. We prove that under mild regularity conditions, the sample skewness is the locally best invariant (LBI) test of normality against a wide class of asymmetric families a...

متن کامل

Detecting Low Complexity Clusters by Skewness and Kurtosis in Data Stream Clustering

Established statistical representations of data clusters employ up to second order statistics including mean, variance, and covariance. Strategies for merging clusters have been largely based on intraand inter-cluster distance measures. The distance concept allows an intuitive interpretation, but it is not designed to merge from the viewpoint of probability distributions. We suggest an alternat...

متن کامل

Locally Asymptotically Optimal Tests for Autoregressive against Bilinear Serial Dependence

Locally asymptotically most stringent tests for autoregressive against diagonal bilinear time series models are derived. A (restricted) local asymptotic normality property is therefore established for bilinear processes in the vicinity of linear autoregressive ones. The behaviour of the bispectrum under local alternatives of bilinear dependence shows the danger of misinterpreting skewness or ku...

متن کامل

Skewness and kurtosis as locally best invariant tests of normality

Consider testing normality against a one-parameter family of univariate distributions containing the normal distribution as the boundary, e.g., the family of t-distributions or an infinitely divisible family with finite variance. We prove that under mild regularity conditions, the sample skewness is the locally best invariant (LBI) test of normality against a wide class of asymmetric families a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical Methods and Applications

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2010